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Highlights
Identification of statistical epistasis in
natural populations remains challen-
ging due to the relationship between
allele frequency and statistical power.

Artificial populations have been con-
structed in model organisms to detect
statistical epistasis between two
regions of the genome; however, it is
difficult to use these results to under-
stand how epistasis operates in natural
populations.
The ability to detect and understand epistasis in natural populations is impor-
tant for understanding how biological traits are influenced by genetic variation.
However, identification and characterization of epistasis in natural populations
remains difficult due to statistical issues that arise as a result of multiple
comparisons, and the fact that most genetic variants segregate at low allele
frequencies. In this review, we discuss how model organisms may be used to
manipulate genotypic combinations to power the detection of epistasis as well
as test interactions between specific genes. Findings from a number of species
indicate that statistical epistasis is pervasive between natural genetic variants.
However, the properties of experimental systems that enable analysis of epis-
tasis also constrain extrapolation of these results back into natural populations.
Studies of focal perturbations in
defined genetic backgrounds sug-
gests that natural selection can influ-
ence the types of nonadditive
relationships that exist.
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The Genotype to Phenotype Map in Natural Populations
Complex phenotypes, including common diseases, are controlled by many genes and envi-
ronmental factors; potentially in unexpected ways. The extent to which epistasis, or interaction
between genes, complicates the relationship between genotype and phenotype is controver-
sial. Does a genetic variant essentially play the same role in each human individual? Or, does its
effect depend on epistatic interactions with other causal alleles, potentially obstructing the
mapping of genotype to phenotype? Epistasis could be important for traits with a simple
genetic basis, such as rare monogenic disorders, as well. For example, cystic fibrosis is caused
by mutations in the CFTR gene, but alleles at other loci influence how the disease manifests in
the lungs, intestines, pancreas, and metabolism [1]. Consequently, knowledge of an individu-
al’s genetic background (see Glossary) is necessary to fully understand the role of a genetic
variant in influencing phenotype. These dynamics illustrate why, despite being difficult to study,
epistasis remains a critical topic in genetics and evolutionary biology research, and carries
important implications for human traits.

Understanding the connection between genotypic and phenotypic variation in natural pop-
ulations motivates a large amount of research in the fields of human genetics, quantitative
genetics, and evolutionary biology. Genetic variants are the cause of differences in genetic
disease risk in humans, the basis for selectable traits in animal and plant breeding, and the
substrate for evolutionary processes in all species. Identifying the causal genetic variants
responsible for natural traits has the potential to improve: applied efforts in precision medicine
for the prediction of individual disease risk and application of personalized therapies; efforts in
agriculture for engineering crops and livestock with increased production; and efforts in
evolutionary biology to understand the genetic mechanisms responsible for adaptation and
speciation. However, connecting genotypic variants to their phenotypic effects is difficult for
most natural traits. The difficulty is a consequence of extreme polygenicity, as most natural
trait variation is caused by many alleles of small effect; sometimes acting in concert with rarer
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Glossary
Allele pair: designation for the
specific alleles present within a
diploid animal at a single variable
site.
Artificial population: population
generated by an experimenter to
study the genetic basis of a trait,
typically through controlled breeding
and initiated from two or more
individuals sampled from a natural
population. A number of common
breeding designs are traditionally
used in quantitative genetics, which
can be expressed as a pedigree.
Balancing selection: maintenance
of two or more alleles at a locus by
the action of natural selection.
Biometry: use of statistics to
analyze biological data.
Breeding value: average value of an
individual’s phenotype, as judged by
the phenotypes of the progeny.
Classical epistasis: approach used
in classical genetics to analyze
genetic pathways and order genes
within them. This is traditionally
recognized through analysis of ratios
of phenotypes.
Compositional epistasis: epistasis
arising from nonlinear interactions
among allele pairs in an otherwise
invariant genetic background. A
typical test of compositional epistasis
uses introgression or genome editing
to generate all possible genotype
combinations at two loci.
Genetic background: genomic
context of an individual, that is, the
full genotype across all loci.
Epistatic variance: one of the
components of genetic variance (i.e.,
amount of phenotypic variance that
can be attributed to genetic factors).
Epistatic variance is sometimes
called statistical epistasis.
Hardy–Weinberg equilibrium: if a
population follows random mating,
the genotype frequencies for a given
allele pair can be estimated from the
allele frequencies. Furthermore, if two
loci are unlinked, the genotype
frequencies of both allele pairs can
be found by multiplying the individual
probabilities.
Higher-order epistasis: nonadditive
interactions between three or more
different allele pairs. This is
sometimes measured by comparing
pairwise epistasis in different genetic
backgrounds.
alleles of small-to-medium effect [2,3]. Furthermore, interactions between alleles may be
nonadditive, in that the effect of any one allele is conditional upon the genotypes of additional
loci throughout the genome. This interaction is typically referred to as epistasis.

Determining the magnitude and nature of epistasis in the expression of natural trait variation is
essential for resolving the relationship between genotype and phenotype. However, investiga-
tion into epistasis is constrained by experimental limitations, including: low incidence of rare
alleles in the population; insufficient statistical power to interrogate all possible allelic combi-
nations; and inability to separate putatively functional variants within haplotypes segregating in
mapping populations due to linkage disequilibrium. Perhaps as a consequence of these
limitations, epistasis has not been identified at any large scale in humans, and the importance of
epistasis in the determination of common diseases and other traits of interest is still debated.
Resolution of this question is important for predicting human traits from genotypic information,
especially when comparing models across populations separated geographically (e.g., differ-
ent countries) or temporally (e.g., Neanderthals), as epistasis will modify the apparent effect of a
genetic variant when the genetic backgrounds of individuals within a population change.
Identification of epistasis and inferences about its nature have primarily emerged from work
in model organisms, whose experimental tractability permits manipulation of genotypes and
allows for creation of artificial populations that overcome some of the obstacles listed above.
In a variety of model organisms, epistasis has been shown to be pervasive in these populations
and sometimes dramatic in the determination of biological traits. Bridging the gap between
findings from experimental systems and observations made in human and other natural
populations remains an important yet unresolved issue.

In this review, we highlight approaches for identifying epistasis in natural traits using model
organisms, and how different approaches interrogate different aspects of gene interaction. We
first provide a short primer to help understand how epistasis is defined and measured, including
at both the population and organism level. Next, we describe how epistasis is identified in model
organisms using mapping populations and genetic manipulations in experimental lines. Finally,
we describe how various factors make generalization of results from experimental systems to
natural populations difficult, and how idiosyncrasies between populations and species govern
the nature and extent of epistasis in natural populations.

What Is Epistasis?
As has been lamented at the beginning of many reviews, the term epistasis may refer to multiple
different phenomena (Box 1). Attempts to define these usages [4–6] and establish common
terminology has failed to gain much traction, so typically a reader must rely on context to infer
the type of epistasis under discussion [5]. Epistasis can sometimes refer to proteins that interact
in some biologically meaningful way – either biophysically or in functional pathways – however,
we avoid such usage as it creates additional confusion in an already confusing field. We instead
restrict usage of epistasis to interactions between genic elements in the expression of phe-
notype. In studies of epistasis in natural traits, which is the topic of this review, gene interaction
is nearly always measured statistically and without regard to biological mechanism; the
interacting loci may be known or unknown. Because experimental methodology essentially
defines the type of epistasis that is measured, we begin by describing historical and contem-
porary approaches to measuring epistasis.

Bateson versus Fisher Epistasis
The most important split in the meaning of epistasis stems from its two independent origins: the
work of William Bateson in the application of the Mendelian approach to the study of inheritance
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Introgression: replacement of a
section of the genome, of one strain
by another, by a genetic cross
between strains and then repeated
backcrossing with the initial recipient
strain.
Linkage disequilibrium:
nonrandom association of alleles at
different loci in a population. In an
outbred, sexually reproducing
population, linkage disequilibrium is
short (�1 kb). Two loci must be
close together to segregate
nonindependently. For artificial
populations, the physical distance
between two linked loci is larger (of
the order of 1 Mb), due to the limited
number of generations of
intercrossing between the parental
lines. Linkage disequilibrium largely
limits experimenters from identifying
causative mutations without
additional experiments.
Minor allele frequency (MAF):
frequency of the second most
common allele in a given population.
The minor allele frequency is typically
used to categorize alleles as rare
(MAF <0.5%) or common (MAF
>5%).
Natural traits: we refer to a trait as
a distinct variant of a phenotypic
characteristic of an organism (e.g.,
blue eyes). A trait is also sometimes
used to refer to a phenotypic
characteristic (e.g., eye color), and
trait values are the variation in the
trait. Natural traits indicate variation
in a character that occurs within a
natural population (e.g., spectrum of
eye colors in humans).
Pairwise epistasis: common
approach to the detection of
epistasis, by limiting the
measurement of nonadditivity to two
different allele pairs at different loci.
Polygenicity: quality of having
multiple genes. Polygenic inheritance
occurs when one characteristic is
controlled by two or more genes.
Quantitative trait locus (QTL):
section of DNA that correlations with
variation in a phenotype. The size of
a QTL is related to the level of
linkage disequilibrium in a population,
along with the size of the effect of
the causative allele. QTLs can
contain two or more causative alleles
in the same gene or in different
nearby genes.
Statistical epistasis: we refer to
statistical epistasis as the nonadditive

Box 1. Different Types of Epistasis

Epistasis might be the most defined and subcategorized terms in all of biology. Dozens of different types of epistasis can
be found in the literature. While we have defined some of the major types of epistasis for the purposes of the paper
discussion, it is useful for the naïve reader to also consider some of the motivating reasons that lead to the definitions of
subtypes of epistasis. For example, consider classical epistasis, where phenotype ratios depart from the expected
ratios of 9: 3: 3: 1. While Bateson was primarily concerned with color characters that followed a 9: 3: 4 ratio, for other
traits, different ratios can occur. This motivated the definitions of new forms of epistasis for many of these ratios, such as
recessive epistasis (9: 3: 4), duplicate recessive epistasis (9:7), dominant epistasis (12: 3: 1), duplicate recessive
epistasis (13: 3), and duplicate gene epistasis (15: 1). A lack of consistency in naming conventions also means that these
different ratios are sometimes referred to with different names.

For measuring statistical epistasis in haploids, additional definitions are used to summarize the exact relationship of
phenotypes between four genotypes. For example, positive or synergistic epistasis occurs when a two-locus combina-
tion of alleles displays a phenotype beyond that expected from the individual effect of the alleles. Negative epistasis, sign
epistasis, and reciprocal sign epistasis are also terms used to describe additional types of phenotypic regimes of the
four genotypes.

As discussed in Box 2, measuring epistasis in diploids requires estimating a four-component vector. Each component
can be named, such as additive–additive epistasis, additive–dominance epistasis, dominance–additive epistasis, or
dominance–dominance epistasis.

Finally, epistasis is sometimes described in terms of physical or biological interactions between two proteins,
irrespective of any genotype–phenotype relationship. This is sometimes called functional epistasis, mechanistic
epistasis, or biological epistasis.
patterns of categorical traits; and the work of R.A. Fisher in applying biometry to studies of
natural selection on continuously varying traits. The former is called Bateson’s epistasis or
classical epistasis [7] and is most commonly associated with classical geneticists’ study of
molecular and cellular pathways that control phenotypes of interest. The latter is called Fisher’s
epistasis or statistical epistasis [5,8], and typically assumes high polygenicity for the trait of
interest and is measured through the use of regression or linear mixed models. While we will use
statistical epistasis throughout this review (and give it a more precise definition below), we note
that the term is one of the most inconsistently used in the literature.

Bateson first defined epistatic genes in studies of color inheritance: epistasis was defined as a
masking phenomenon wherein alleles of one gene hide the effect of the alleles of a second
gene. Masking of alleles can be measured using phenotypic ratios of categorical traits in an F2
intercross, for example, when the loss of one phenotypic class produces 9: 3: 4 ratios instead of
the expected 9: 3: 3: 1 [9]. Although Bateson worked with natural variation, contemporary
molecular geneticists typically use laboratory-induced, loss-of-function mutations in the clas-
sical approach, which has proven powerful for analyzing and ordering genes into functional
pathways [10,11].

Most analyses into the genetic basis of natural trait variation require a departure from the
classical approach, for several reasons. First, most traits vary continuously rather than cate-
gorically, such as height or the expression of common diseases, which are modeled by an
underlying liability scale. Calculating F2 ratios is impossible for such traits. Second, classical
epistasis experiments primarily test interactions between pairs of genes [11], but natural
populations harbor large numbers of allelic variants that may influence gene function and
mediate trait expression in myriad ways. In 1918, Fisher published a research paper on the
application of biometry to bridge the divide between Mendelian genetics and natural popu-
lations [12], which accounts for both the quantitative action of Mendelian factors and inter-
actions between two or more allele pairs. The Fisherian paradigm is useful as it allows a
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terms of a linear regression or linear
mixed model, estimated by averaging
its effect across the genetic
backgrounds within a population, or,
in the case of compositional
epistasis, from individuals that are
otherwise genetically invariant. Some
authors only consider statistical
epistasis in the context of
populations or refer to the epistatic
component of variance as statistical
epistasis.
researcher to construct a model to quantitatively assess the effect of genetic variants (and their
paired alleles) on phenotype. The model is flexible with respect to the number of allele pairs as
well as the relationships between them. In the simplest case, the model evaluates the effect of
an allele pair at a single locus on the observed phenotypic variance. A model with a second
allele pair at a second locus can also include a term to represent the interaction between them,
and in theory there is no limit to the number of terms representing direct contributions of allele
pairs (additive effects) and all possible combinations of interdependence between them
(interaction effects). A model with interaction terms estimates coefficients for the additive
and nonadditive terms; the latter of which are estimates of what we call statistical epistasis
(Box 2). For the rest of this paper, we discuss statistical epistasis as it is defined and measured
in this sense.

Measurement of Statistical Epistasis in a Defined Genetic Background
Intuitively, it is easiest to understand epistasis between two allele pairs, with either four possible
genotypes in a haploid individual, or nine possible genotypes in a diploid (the overall approach
to modeling pairwise epistasis is described in Box 2 and visualized in Figure 1). While there is no
reason to expect interactions to be limited to two loci – especially since most naturally varying
traits are polygenic – most investigations only estimate pairwise epistasis for reasons of
tractability. If the analysis is conducted in an invariant genetic background, it estimates what is
called compositional epistasis, or the nonadditive effect of the two allele pairs in an individual
that results from the combinatorial substitution of one allele for another [5]. Practically,
combinatorial substitution could be accomplished using introgression or genome editing to
create all possible genotypes (four genotypes for a haploid or nine genotypes for a diploid)
within a single reference strain. A large number of genetically identical individuals can be
phenotyped and statistical epistasis can be estimated using least squares or a similar proce-
dure (Box 2). Tests of compositional epistasis are the purvue of model-system geneticists, who
can manipulate genotypes and are often interested in directly assessing the effect of an allele
substitution within an individual genotype. For most species, including humans, compositional
epistasis serves more of a thought experiment that is useful for building intuition on what is
being measured.

Compositional epistasis for a given set of alleles can be different in different genetic back-
grounds. This is due to higher-order epistasis [13], where differences in genetic background
across individuals can mask or modify the pairwise epistasis measured between two allele
pairs. While higher-order epistasis is difficult to detect, it has been identified in multiple species
[14–17], and theory and simulations suggest it can play an important role in evolution [18,19]. A
recent systematic analysis of trigenic interactions in yeast suggests that higher-order genetic
interactions play a key role in the genotype-to-phenotype relationship [20].

Measurement of Statistical Epistasis in Natural Populations
Statistical epistasis, as defined in Box 2, can be estimated from natural populations including
extant human populations. In this case, an experimenter is limited to using individuals that
naturally occur within a population; each with their own unique genetic background. In these
natural populations, allele frequency (Box 3) plays an important role in the ability to detect
statistical epistasis, because allele frequency determines the expected number of individuals to
contain each of possible genotypic combinations and, thus, the statistical power of the test.
Unlike measurements of compositional epistasis, where an experimenter ensures all genotype
combinations are produced, measurements of statistical epistasis are dependent upon what
exists in the natural population. Thus, even if epistatic gene action occurs between two variants,
if those genotypes are not represented in the population then epistasis will not be detected. If a
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Box 2. Measurement of Statistical Epistasis and Epistatic Variance in Haploids and Diploids

To understand statistical epistasis, it is useful to demonstrate how it is measured. It is most intuitive to start with pairwise epistasis measurements in a haploid
species, considering allele pairs at two loci (A1 or A2 at locus A and B1 or B2 at locus B). We assume that these two loci are the only genetic factors that affect the
phenotype. In the two-locus scenario, the question is whether the allelic variants contribute independently to phenotypic variation, or if the effect of an allele at one
locus depends upon the identity of the allele at the other locus. For a haploid, each member of the population can take one of four possible genotype combinations:
A1B1, A1B2, A2B1, and A2B2. To measure statistical epistasis between these allele pairs (see Figure 1 in main text), a population is genotyped and phenotyped and the
resulting data matrix is fit to an equation containing four free parameters:

y ¼ a1x1 þ a2x2 þ ix1x2 þ m (I)

where y is the phenotype and x1 and x2 are binary variables that represent the genotype of the individual for the two loci. The parameters represent the independent
contribution of each locus to phenotype, that is, the additive effects (a1, a2); the mean phenotype of the population (m); and variation in phenotype due to the
(statistical) interaction between loci, or statistical epistasis (i). For haploids, the parameter i is what we call statistical epistasis throughout this paper. Through the
above approach, an experimenter can estimate the value of i from a population.

This statistical framework also allows a biometrician to fit the data without accounting for nonadditive (interactive) effects between the two loci, using an alternative
equation where i is excluded:

y ¼ a1x1 þ a2x2 þ m (II)

This second approach does not mean that epistasis does not exist between two allele pairs, simply that the experimenter chooses not to include it in their model.
Assuming epistasis does exist in the system, the fit of the models given by equations (I) and (II) to the data will differ: the estimates of a1 and a2 will change.

Once a model is fitted, the amount of variance in the initial population that is explained by genetic factors is estimated. A standard approach for this is to decompose
the total genetic variance (VG) into two orthogonal components, additive variance (VA) and epistatic variance (VI, for interactive), with the following equation [30]:

VG ¼ VA þ VI (III)

VG represents the total amount of phenotypic variation caused by genetic factors and is estimated from the amount of variation captured in equation (I). While the
names of VA and VI suggest that they are simply the genetic effects decomposed into additive and interactive components, their calculation and meanings are
actually unintuitive. Following Falconer and Mackay [30], Chapter 7, VA is calculated using the breeding values of each of the four genotypes. The breeding value of
a genotype represents the average value of the genotype as estimated by randomly mating individuals with members of the population. Assuming a population is in
Hardy–Weinberg equilibrium, the breeding value of a genotype, and thus VA, can be estimated using equation (II). VI is then estimated using equation (III), that is, by
subtracting VA from VG. Failure to observe epistatic variance is sometimes interpreted as an absence of interactive gene action, but this is not necessarily the case
[79]. As noted by Falconer and Mackay, ‘one cannot speak of an individual’s breeding value without specifying the population in which it is to be mated’ [30]. In other
words, additive variance (as well as epistatic variance) is not only determined by the genotype–phenotype relationship, but also the allele frequencies of the causal
alleles in the population from which it is measured. Statistical epistasis, in contrast, exists if there is nonadditive interaction between genotypes in the determination of
phenotype, but its ability to be detected depends heavily on experimental conditions, including allele frequency (see Figure 1 in main text). Newer approaches to
estimating variance, which deviate from this framework and are beyond the scope of this review, can deal with departures from Hardy–Weinberg equilibrium in the
mapping population [80].

To extend this approach to diploid animals, one must account for the possibility of allelic interaction at heterozygous loci and extend the number of possible
genotypes from four to nine. One standard approach is to modify the fit equation as such:

y ¼ m þ a1x1 þ d1z1 þ a2x2 þ d2z2 þ iaax1x2 þ iadx1z2 þ idaz1x2 þ iddz1z2 (IV)

where x1, x2, z1, and z2 represent the full genotype of each individual, d1 and d2 represent the average dominance, and iaa, iad, ida, and idd represent the statistical
epistasis [4]. Epistasis is necessarily more complicated to measure in diploids (i.e., a four-component vector) in order to account for all possible interactions.
Likewise, the partitioning of the variance now includes a dominance term:

VG ¼ VA þ VD þ VI (V)

It should be noted that if epistasis is a deviation from the expectation that alleles act on phenotype independently, then additivity is not necessarily the only, or even
the obvious, null model. Multiplicative models have also been used to represent independence among alleles, which may be more appropriate for traits like mortality
where genetic effects might modify probabilities of death; in any event, it is often the case that phenotype data can be transformed to a different scale [5,7].
variant is at low frequency, then the effect at the interacting locus will appear additive since it will
be predominantly measured in only one genotypic background for the second locus (for a
thorough treatment, see [21]). The ability to detect epistasis is maximized at allele frequencies of
50% because the representation of genotypes is maximized (Figure 1, Box 3). In human
populations, most genetic variants in a population are rare; >80% of genetic variants have a
minor allele frequency <0.5% (Figure 2) [22]. For two variants in Hardy–Weinberg equi-
librium with this frequency, only three of the nine possible diploid genotypes are sampled at an
appreciable frequency (Figure 3). The constraints of allele frequencies mean that it is largely
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Figure 1. Primer on Measuring Pairwise Epistasis in a Natural Population. There are three primary steps to measuring statistical epistasis in a pairwise manner.
Here, we illustrate its detection in a haploid population (e.g., Saccharomyces cerevisiae) between two loci (A and B) containing two alleles. We have chosen this example
to demonstrate how allele frequencies can affect estimates of statistical epistasis and the additive terms of the model. Reading Box 2 in concert with this figure should be
helpful. (A) To estimate epistasis, a number of individuals must be sampled from a larger population. Here, we show how three subpopulations can be sampled from a
larger population of genotypically unique individuals (illustrated by different colors). These populations might be geographical in nature (i.e., yeast from the US vs China).
(B) The sampled individuals are then genotyped and phenotyped to create a data matrix (n = 200 for each population). For a haploid, there are four possible genotypes
between two allele pairs. Only one data matrix is displayed, but each population is assumed to have its own data matrix. The allele frequency at A and B can be
calculated for each population using the Geno column. The phenotypic variance can be calculated for each population using the Pheno column. In this case, the allele
frequencies for both loci are different in the three populations. (C) The data from (B) are fitted using linear regression. In these plots, the genotypes of both loci are
represented by the x axis (A) or color of the points. Nonadditivity can be recognized by nonparallelism between the blue and yellow lines; the three populations differ in
allele frequency across loci. To simulate how allele frequency affects the distribution of phenotypes in a population, first, we assume an epistatic relationship between the
loci, as represented in the top row. This relationship does not vary across populations because we assume no higher-order epistasis exists. Next, random noise (from a
Gaussian distribution) is added to the individual phenotypes, to represent variation contributed by the environment, stochasticity, or other loci (the average of which is
constant across populations). Each individual’s phenotype is represented by a single dot in the middle and bottom rows. The regression lines between the middle and
bottom rows differ according to the regression model; in the middle, the additive model given by Equation (II) in Box 2 is used, in the bottom, the nonadditive model that
includes statistical epistasis, given by Equation (I) in Box 2, is used. The amount of variance that is captured by the fit is also shown in each panel. VG, VA, and VI are
defined in Box 2. As can be seen, for two allele pairs with high levels of epistasis, allele frequency plays an important role in the slope of the fit (i.e., the direction of the
effect size) and the amount of variance captured by the strictly additive model (middle row).
impossible to measure statistical epistasis between the majority of genetic variants that are
present in human populations. These issues are compounded when studying interaction
between three or more loci.

Just as genetic background can influence compositional epistasis, statistical epistasis between
two allele pairs can be different in different populations (e.g., between European and African
human populations) due to the actions of higher-order epistasis. The composition and allele
frequencies of other variants participating in higher-order epistasis can vary across populations.

Due to the importance of epistasis for understanding complex diseases [23,24] or modifiers for
mongenic disorders [25], there has been remarkable activity in the development of new
888 Trends in Genetics, November 2018, Vol. 34, No. 11



Box 3. Allele Frequency in Populations

One of the most important parameters in population genetics is allele frequency, the measure of how common or rare a
specific allele is in a population. Allele frequency must be calculated with respect to a well-defined population at a
specific timepoint, such as the set of individuals currently found on a given island. For haploid organisms, this measure is
calculated by taking the total number of individuals carrying the allele of interest and dividing the total number of
individual samples. For diploids, the frequency must include both chromosomes. This can be achieved by adding the
frequency of homozygotes of an allele to the half the frequency of heterozygotes [30].

Changes in allele frequencies over time or between populations can be used to identify evolutionary forces (positive,
balancing, or purifying selection), changes in demography (population size, migration, and substructure), or nonrandom
mating. In quantitative genetics, these frequencies play an important role in the ability of statistical models to identify
genetic variation that influence a phenotype of interest.

The distribution of allele frequencies for a large number of genetic variants is referred to as the allele frequency spectrum.
For natural outbred populations, most variants have low allele frequencies, with a minor allele frequency <0.5%. When
quantitative geneticists make artificial populations, via intercrossing and inbreeding designs initiated with a limited
number of parental strains, the allele frequency spectrum is dramatically changed. Allele frequencies for a large number
of alleles are inflated, which promotes the detection of rare variants and variants of small phenotypic effect.
methods to detect epistasis in humans [26]. Analyses performed in the context of genome-wide
association studies in human populations usually benefit from increased statistical power due
to large sample sizes. Still, since validation of putative interactions is difficult, the extent and
nature of statistical epistasis in humans remains controversial [26,27]. A number of confounding
factors can potentially create the false appearance of epistasis, including demographic struc-
ture in the data arising from sampling multiple populations, missing genotypes, and mismea-
surement of phenotypes in the tails of the distribution [27].

Epistatic Variance – An Alternative Definition of Statistical Epistasis
In this review, we use the term statistical epistasis to explicitly refer to the interaction terms
estimated by a linear model, as described above and explained in detail in Box 2 (for more
thorough treatment, see [4,28,29]). However, much confusion in how epistasis is discussed
and measured in naturally varying traits arises from conflation of two distinct uses of the term
statistical epistasis. For example, a linear model with an interaction term, as described above,
can be compared to an otherwise identical model without the interaction term [30]. The
difference in the fit of these models to the empirical data is an estimate of epistatic variance
(Box 2). Epistatic variance is sometimes called statistical epistasis [28,31], but these measures
are distinct. Epistatic variance is the fraction of the total phenotypic variance for a given
experimental design or population that requires the use of nonadditive interaction terms to
capture the effect of a genotype on a trait. Confusion regarding what is captured by epistatic
variance is exacerbated by the fact that the additive and interaction terms in a linear model both
contribute to the additive variance captured by an additive-only model. This is because alleles
that interact epistatically also show additivity, so long as their effects, when averaged over the
genotypes at the other locus, are different. For the same reason, only a portion of the interaction
term in a full linear model is responsible for the epistatic variance (Box 2). Working through an
example problem, such as in Figure 1, can be helpful to a new student encountering epistatic
variance for the first time. This example also was chosen to demonstrate how allele frequency
can modify the estimated effect of an allele pair, despite the underlying compositional epistasis
between the two genes remaining unchanged.

Epistatic variance can also be estimated without any assumption about the number of loci
contributing to a trait using information about genetic relatedness between individuals within a
mapping population [12]. For example, line crossing produces individuals of known genetic
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Figure 2. Allele Frequencies in Natural and Artificial Populations. (A) Histogram of allele frequencies of genetic
variants in a human population (black line). These data were taken from 2504 sequenced individuals as part of the 1000
Genomes project, limiting data to chromosome I. The population allele frequencies of genetic variants that differ between
two, four, or 16 individuals is also plotted, showing that while most genetic variation in a population is rare, most genetic
variation between two individuals is common. (B) Histogram of allele frequencies of genetic variants in an artificial mapping
population constructed from either two, four, or 16 parental lines (colors and line types follow A). The amount of genetic
variation captured in the parents and initial allele frequencies are taken from data in (A). While the exact allele frequency
histograms will vary between species due to idiosyncratic differences, these panels illustrate the inflation of allele
frequencies that will occur due to construction of an artificial population.
relatedness and degree of heterozygosity, which can then be used to estimate epistatic
variance and, furthermore, decompose it into multiple components that also include domi-
nance effects [32]. These approaches are possible because the different components of
variance are reduced at different rates as genetic relatedness decreases. Because these
approaches do not require explicit genotyping information, they played a major role in first
demonstrating the influence of epistasis in the expression of natural traits at a time when
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Figure 3.

(Figure legend continued on the bottom of the next page.)

Genotype Frequencies in Natural and Artificial Populations. The genotype frequencies of a natural or
artificial (inbred) diploid population (n = 10 000 or 256 respectively), shown as a heatmap. The artificial population was
created from either a two-, four-, or 16-parent standard RIL cross design. The different population sizes (n) match typical
sizes used with natural or artificial populations. There are nine possible genotypes for two allele pairs in a diploid, here
represented as colored cells within each 3 � 3 matrix, which vary in the allele frequencies of either A or B (given by pA1 and
pB2). The genotype of locus A is shown on the y axis and the genotype of locus B is shown on the x axis. For rare genotypes
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sequencing was expensive. Recent work in humans using pedigree information has also been
used to estimate epistatic variance [33].

Use of Model Organisms to Study Epistasis
Because of the difficulties in studying epistasis in natural populations, much of the research into
the nature and extent of epistasis has been performed in model organisms. The ability to
manipulate genotypic combinations in model systems offers several powerful approaches that
bypass the limitations imposed by natural populations [34]. The approaches are described
below; all have revealed pervasive epistasis within experimental systems, including budding
yeast, nematodes, fruit flies, mice, and a number of plant species. In the following section, we
are specifically referring to the use of model organisms to study epistasis that occurs between
natural genetic variants (i.e., those that are found in a natural population). The haploid and
diploid models for estimating statistical epistasis (Box 2) can be used here as well.

Artificial Populations Can Identify Regions of the Genome That Interact with Each Other
Statistical epistasis can be estimated from artificial populations created by an experimenter
through controlled breeding. These populations are created from a small number of individuals
(typically 2–16) sampled from a larger natural population. These individuals capture a subset of
the natural genetic variation segregating in a population, with a bias towards alleles that are
common (Figure 2). Artificial populations can be well powered to map the genetic basis of a
given phenotype. In part, they derive power from inflation of allele frequencies across the
genome towards 50% (Figure 2) due to controlled mating and the use of a small number of
parental lines to initiate the populations. A second advantage common to these approaches is
the ability to replicate individual genotypes by creating true-breeding inbred lines, which
improves the estimation of genetic contributions to the phenotype.

At its simplest, two inbred parental strains are crossed, and hundreds of independent F2
individuals are inbred to create stable, recombinant inbred lines (RILs). Using multiple parental
strains and adding several generations of intercrossing before inbreeding increases the amount
of genetic diversity in the population and expand the genetic map. Once the RILs are genotyped
and phenotyped, associations between them can identify large recombinant sections of the
genome (often �1 megabase) that contain one or more genetic variants that influence the
phenotype, known as quantitative trait loci (QTLs). Overall, this approach has been suc-
cessful; QTLs have been identified for many phenotypes across the range of eukaryotic life.

Identification of significant QTLs permits tests of statistical epistasis between them, and many
empirical examples have been published (reviewed in [29,35]). If the genetic architecture of
(<100 in A and <10 in B), the exact number of expected individuals is also shown. If sufficient rounds of inbreeding occur,
genotypes for artificial populations are homozygous. For clarity, the impossible heterozygous genotypes are shown in grey
for artificial populations. (A) Comparison of genotype frequencies for natural and artificial populations. The allele frequency
of each allele is 50%. For natural populations, individuals were assumed to follow Hardy–Weinberg equilibrium, and the
most-likely genotype is the double heterozygote. For artificial populations, each of the four possible homozygote
combinations are equally likely. (B) Comparison of genotype frequencies in natural populations for three different allele
frequencies. The case of p = 0.5% represents rare variants, p = 5% represents common variants, and p = 50% represents
allele frequencies where detection of epistasis is maximally powered (Max). Rare variants do not explore much of the
genotype space (i.e., rare–rare only one genotype is >100, rare–common only two genotypes are >100, and rare–max
only three genotypes are >100). (C) For artificial populations, individuals are assumed to be completely inbred, resulting in
only four possible genotypes (the corners of the square). The case of p = 6.25% represents allele frequencies that are
possible in a 16-parent RIL, p = 25% represents allele frequencies that are possible in a four- or 16-parent RIL, and
p = 50% represents allele frequencies that are possible in a two-, four- or 16-parent RIL. Abbreviations: RIL, recombinant
inbred line.
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complex traits is generalizable, then the accumulation of examples of epistasis in these
experimental systems would suggest that statistical epistasis is likely to be pervasive in other
outbred populations, like humans [23,29]. While we do not dispute that epistasis is important
for human traits, there are a number of challenges in generalizing results from experimental
model organisms to the studies of natural populations that are worth explicitly discussing.
These challenges make it nearly impossible to translate results from current approaches in
model organisms into quantitative predictions of the pervasiveness of epistasis in any natural
populations, including humans.

Four Issues with Translating Results on Epistasis from Artificial Populations to Natural
Populations
Increased Linkage Disequilibrium
Due to the finite number of meiotic recombination events that occur in the construction of an
artificial population, QTLs contain a large number of genetic variants, typically thousands, in
linkage disequilibrium on common haplotypes (a more comprehensive description of breeding
design and linkage disequilibrium can be found in [36]). Consequently, an outstanding issue in
estimating epistasis from artificial populations is whether an epistatic QTL harbors more than
one interacting allele pair. This possibility is reasonable, since fine-mapping QTLs, for example
by introgressing fragments into an isogenic background, has been shown to fractionate the
QTL into multiple loci [37]. If detection bias for primary QTLs is skewed towards genome regions
with aggregates of causal alleles, this may contribute to the observation of pervasive epistasis in
mapping populations.

One way to address this is through improved cross design to increase the number of gen-
erations of outcrossing. This approach was recently used in Caenorhabditis elegans, taking
advantage of its short generation time (�3 days), to create a large mapping population using
140–190 generations of outcrossing [38]. This mapping population provides a substantial
increase in mapping resolution, to approximately the single gene, with little population sub-
structure. When used to map fertility and growth traits, the authors found that epistasis was
extensive and explained up to 40% of the trait variance. While these results may be idiosyncratic
to C. elegans, they confirm that statistical epistasis between QTLs is not strictly a consequence
of interactions across large haplotypes and that identification of the interacting genes is
possible.

Distortion of Allele Frequencies between Artificial and Natural Populations
For a two-parent mapping population, the creation of RILs balances the representation of
genetic differences between individuals; regardless of its allele frequency in a natural popula-
tion, each genetic variant is inflated to 50% in the artificial population. Similar inflation will occur
for multiparent panels (Figure 3). While this change in allele frequency maximizes the potential
for detection of epistasis [29], it also masks whether epistasis identified in mapping populations
arises from allelic combinations that are rare or common in a population. This is a major issue for
translating these observations to natural populations, as rare variants contribute less to the
genetic variance of a trait. Furthermore, rare alleles are fundamentally different from common
alleles. For example, deleterious variants are more likely to be rare [39] and rare alleles have
been shown to have larger effect sizes for human height [2]. This may be explained by an
assumption that rare alleles are newer and less likely to have acquired compensatory modifiers,
with further implications for the role of epistasis in natural populations [29].

This issue can be resolved through the identification of the causative alleles, followed by
calculating the allele frequency in a natural population. However, this typically requires
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extensive fine mapping and additional genetic manipulation. CRISPR-enabled genome editing
can potentially overcome some of this difficulty, and this approach has been used to identify
causative mutations within a single QTL in multiple systems [40–43]. In the future, these
approaches can be extended to identify allele pairs with nonadditive effects.

Homozygosity in Experimental Lines
Diploid mapping populations generated by forced inbreeding do not follow Hardy–Weinberg
equilibrium and explore only four of the nine genotypes (Figure 3). Consequently, statistical
epistasis in these artificial populations is estimated using the simpler linear model for haploids
(Box 2). For a sexually reproducing species, the genotype space explored by an artificial
population rarely explores genotypes representative of a randomly sampled allele pair from a
natural population (Figure 3). In other words, there is no general way to translate the haploid
estimate of statistical epistasis [see Equation (I) in Box 2] to the four-component diploid version
of epistasis that is relevant to natural populations.

For mapping populations derived from naturally outbred wild strains, inbreeding also has
significant effects on fitness and trait expression. The same problem arises in tests for
compositional epistasis or genetic background effects, since a controlled genetic background
must be homozygous. For example, Drosophila melanogaster and Mus musculus live as
outbred populations in nature, and artificial mapping populations in these systems exhibit
so much inbreeding depression that the majority of attempted lines typically go extinct in the
process of constructing the population [44,45]. It is likely that rare deleterious mutations are
unmasked by this process, and selection bias fixes alleles in strong epistasis in the recombinant
lines that suppress the deleterious phenotype. Not only are inbred genetic backgrounds
unlikely to represent the genetic backgrounds of outcrossed individuals found in the wild
[21], but phenotypes of inbred lines may depart substantially from those in naturally outbred
populations in the presence of dominance variance [46]. The experimental power provided by
forced homozygosity comes at a price; genotypic effects and genetic interactions detected in
these experimental systems are real, but not necessarily relevant outside the laboratory.

Idiosyncratic Differences between Species
Epistasis is likely idiosyncratic across species, given differences in recombination rates,
population structure, and mating system. For example, can one generalize observations of
epistasis from C. elegans to human populations? C. elegans hermaphrodites primarily repro-
duce by selfing, and experience rare outcrossing events through mating with males. A
combination of high levels of linkage disequilibrium between different chromosomes and strong
outbreeding depression is consistent with the existence of compensatory evolution in isolated
lineages [47,48]. Therefore, the substantial epistasis observed in C. elegans artificial popula-
tions [38] could be caused by new allelic combinations that disrupt the stable haplotypes found
in the wild. Limited numbers of sperm in hermaphrodites may encourage outcrossing in nature
and consequently generate epistasis in the wild [49], but probably not to the degree generated
by forced outcrossing in an artificial population. Overall, model organisms exhibit a wide range
of mating systems and demographic patterns, which makes generalization of results between
them difficult.

Some patterns of epistasis that appear divergent across species might participate in species-
specific occurrences of balancing selection. D. melanogaster exhibits short-term cyclical
changes in allele frequency across seasons that imply the presence of balancing selection, that
is, selection for some alleles during cold months and others during warm months [50,51]. A
quantitative model that can explain this maintenance of polymorphism is optimized under an
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assumption of high polygenicity and diminishing returns epistasis [52]. C. elegans also exhibits
evidence of pervasive balancing selection, but by stable signatures of long-term selection [53–
56]. Genomic analysis suggests that hundreds of these loci segregate in the population [57,58].
It is currently unknown why balancing selection might persist in C. elegans, but its transition
from sexual to androdioecious mating system might have been involved [56].

Recent Approaches for Using Model Organisms to Study Epistasis
While the caveats listed above must be kept in mind, a number of recent publications illustrate why
modelorganisms will remain critical forunderstanding epistasis. We havechosen to highlight a few
recent examples that we believe go beyond QTL mapping to analyze epistasis in greater detail.

Use of Compositional Epistasis to Estimate the Full Diploid Model of Statistical Epistasis
The identification of interacting QTLs via an artificial population, including putatively epistatic
variants, may be followed by experiments that test for interactions in a more controlled setting.
As discussed above, compositional epistasis can be measured by the placement of specific
alleles in a single genetic background, for example, to evaluate sequential mutational steps in
adaptive evolution [59] or dissect the genetic basis of a trait [15]. Interrogation of compositional
epistasis in a diploid, two-locus scenario is rare in the literature, but one striking example
demonstrated substantial epistasis between loci and, furthermore, provided an empirical
estimate of the VA contributed by the interacting effects [60]. In this study, alleles at seven
previously identified QTLs for floral traits in Mimulus were distributed as pairwise combinations
across experimental lines. The authors created all nine genotype combinations to fully measure
all four components of statistical epistasis for 11 of the possible 21 pairs of loci for a variety of
traits. With this information, the authors could predict the effect that allele frequency change
would have on the effect of these QTLs. In some cases, epistasis amplified VA, in others it
reduced VA, but overall the magnitude of VA was largely determined by the frequency of the
alleles. While this study and others like it cannot provide estimates of epistasis in natural
populations, they can characterize how epistasis between wild-type alleles might influence
population dynamics, including response to selection. This work is important, as selection will
modify allele frequencies, and populations will explore different parts of the genotype space.

Epistatic Interactions with a Focal Allele Can Be Modified by Natural Selection
Another approach that requires the use of model organisms is to examine the effect of a focal
allele in different genetic backgrounds. Magnitude or even direction of effects between alleles
can change when they are tested in different wild lines or strains, demonstrating a nonadditive
interaction between the focal locus and the genetic background [31]. This approach departs
from our discussion of evaluating two-locus statistical epistasis by the linear models described
above, but it is an especially tractable method in model systems, and interactions with genetic
background are extensively reported in the literature [61]. Statistical interaction between a focal
locus and the genomic background is typically estimated in the haploid or homozygous diploid
state, which eliminates complexity contributed by dominance. A model with terms for the focal
locus genotype, the genetic background, and the interaction between them can then be fitted
to phenotype data, which permits analysis of more than two genetic backgrounds [62,63].

A special case of genetic background interaction is when perturbation of the focal gene,
sometimes called a capacitor [64], reveals phenotypic variation arising from natural genetic
variation that was previously silent, or cryptic. Much of the motivation behind research into this
phenomenon lies in its potential to facilitate adaptive evolution, by increasing the additive
genetic variance available to selection [65,66]. One of the most well-characterized examples of
genetic background interaction involves the classic capacitor HSP90. The activity of this heat
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Outstanding Questions
With the advent of better methods to
detect statistical epistasis, can epista-
sis be identified in natural populations
including humans?

What is the contribution of epistasis to
the additive variance of a complex
trait?

What is the role of higher-order epista-
sis in natural traits?

Will hub alleles that interact with a large
number of different loci be important
for understanding the response to
long-term selection?
shock protein is presumed to mask genetic variants by compensating for instability in protein
conformation through its chaperone activity, and interruption of HSP90 function has been
shown to unmask variation in many systems, from microbes to vertebrates. Cryptic variation
has been revealed by laboratory-derived mutant alleles of HSP90 [67], natural allelic variants of
HSP90 [68,69], and gene perturbations that are not technically genetic, including reduction of
HSP90 function by RNAi [70] and, most commonly, drug inhibitors [62,67,71].

In addition to being pervasive, genetic background effects are also often dramatic [31], and
unlikely to represent typical interactions among alleles that are common in natural populations.
However, they are valuable in resolving genetic interaction networks and may shed light on the
genetic architecture of modifiers of Mendelian genetic diseases [61,72]. Furthermore, they
demonstrate how epistasis can seriously influence the consequence of a new mutation entering
a population. For example, HSP90 activity masks the effects of standing genetic variation in
many systems (e.g., [67,70,71]), but it has also been shown to potentiate the expression of de
novo mutations in yeast [62]. Natural selection purges deleterious alleles, but only when they
penetrate to phenotype in the background in which they occur; this work shows that standing
genetic variation in natural populations represents both the mutations and the epistatic
interactions that have escaped selection. Although examples outside of HSP90 [68,69] are
rare, other naturally occurring capacitors probably do segregate within populations; if so, they
should increase the additive genetic variance available to selection when combined with
potentially cryptic alleles. One example comes from artificial selection in chickens, in which
a QTL was determined to interact with other QTLs such that selection on the capacitating ‘hub’
released variation in the ‘spokes’ [73]. Recent work in yeast uncovered a similar hub and spoke
architecture [74], further demonstrating the potential role of epistasis in directing evolutionary
trajectories. In these scenarios, selection on hubs releases new phenotypic variation during an
ongoing trajectory of selection. If this phenomenon is not rare, it may explain the ability of some
populations to respond to selection over many generations without the assumption of new
mutations [75].

Conclusion Remarks
In this paper, we have argued that the manipulations that enable detection and characterization
of epistasis in experimental systems also limit extrapolation of these findings into the context of
wild populations. While we have made this point strongly, we do not seek to deride the work
that has been done in model organisms towards identifying epistasis. Rather, this work was
essential to show that epistasis occurs in the expression of natural genetic variation and should
not be ignored despite the difficulty in its study.

The challenge now in model organisms is to move away from detecting its existence and towards
understanding its nature (see Outstanding Questions). Our review, like most treatments of
epistasis in the context of natural genetic variation, mostly considers interactions between two
loci, but there is reason to expect higher-order epistasis exists and matters for evolution [13,17].
Testing beyond the two- or three-locus case becomes a problem of combinatorics that will always
exceed our capacity to increase sample size. Thus, experimental investigations into higher-order
epistasis will have to rely on planned comparisons of genetic combinations, for examples of
variants within described molecular pathways or between epistatic loci identified in natural or
artificial populations from lower-order analyses. The discovery and development of genome
editing technologies opens this door. Now, expedient replacement of specific alleles is possible,
especially in microbial systems that are already capable of automated phenotyping in well-
replicated experimental designs [76]. The ability to test a mutation, or combinations of mutations,
in a large number of genetic backgrounds is now reasonable.
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Another key question that model organisms can address is to understand how natural selection
influences the nature of epistatic relationships that persist among segregating variants. An
example of this was provided by the recent work of Geiler-Samerotte [62]; however, the
generalizability of this work remains unknown. Furthermore, since the effect of a mutation
depends on the genetic background in which it lands, its fate in a population and the
evolutionary trajectory of the population itself are shaped by epistasis [77,78]. Along these
lines, model organisms will help to understand the role of epistasis in response to long-term
directional selection. While the additive variance is important for predicting how a phenotype
under selection will change in the immediate generation, little is known about the underlying
genetic architecture that is responsible for the additive variance, and how this genetic archi-
tecture changes in response to selection as allele frequencies are changed by selection
[68,73,74]. Cheap resequencing technologies have enabled the possibility to follow allele
frequency over time in these experiments to identify regions of the genome under selection.
Exploring the role of epistasis between these regions is now possible.
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